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Overview

My doctoral studies, under the supervision of Andrei Okounkov, brought me
in close contact with the world of dynamics in Teichmüller space, polygonal
billiards, and the representation theory at work in the study of the action
of SL2(R) in this space. This is described in Section 3.

During those studies, I was in constant communication with John N.
Mather. I had sought his advice as I applied for doctoral studies, and it was
only his sudden illness that ultimately led me to the hard decision of not
writing my thesis with him. After my Ph.D. thesis on quadratic differentials,
I came back to his line of research, developing the theory of the calculus of
variations in the context of closed measures, which is described in Section
2. This has connections with mathematical physics and dynamical systems,
especially Lagrangian dynamics, optimal control, and mass transport.

More recently, under the advice of Jérôme Bolte and Edouard Pauwels, I
have been able to apply the theory of closed measures also to the analysis of
the dynamics and convergence of optimization algorithms, a line of research
described in Section 1.1.

After that, I moved on to work on global polynomial optimization meth-
ods with Milan Korda, Jean-Bernard Lasserre, and Victor Magron, with
projects described in Section 1.2.

1 Algorithm analysis

1.1 First order optimization methods

The advent of huge scale non-convex, non-smooth, and poorly structured
optimization problems (e.g. deep learning) has triggered a revival of interest
in the explicit subgradient method of Shor [39], whose iterates {xn}n satisfy

xn+1 = xn + εnθn
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for some θn in the Clarke subdifferential [9] of the objective function and
small 0 < εn ↘ 0.

The study of its dynamics turns out to be much more delicate than
implicit versions (like the proximal gradient and other proximal decompo-
sition methods). It features indeed highly oscillatory behavior even with
rigidity assumptions like semi-algebraicity of the objective function. This
makes it hard to directly apply, for the discrete flow, many of the tools
that have been developed for the analysis of the continuous flow [14], such
as the Kurdyka– Lojasiewicz inequality [7, 24] and the theory of asymptotic
pseudotrajectories [3, 4].

In the work [8], we analyze the algorithm under the fairly weak as-
sumption that the objective function is Lipschitz continuous and path-
differentiable, and we prove some convergence properties. This shows that
a rather weak hypothesis is enough to avoid the very pathological behavior
illustrated by recent examples [13] in the Lipschitz continuous case.

To obtain this result we use closed measures, a tool taken from geometric
measure theory and further described in Section 2.1, that we expect to
be useful also for the analysis of convergence of other algorithms involving
sequences in Euclidean spaces.

The paper [8] is accompanied by our other paper [37] that gives very
pathological counterexamples that show that the results of [8] are sharp in
several senses.

With Pascal Bianchi, we further generalized [6] the arguments in [8] to
explain the broader contexts already considered by [3, 4].

1.2 Polynomial optimization

In most applications, the data are semi-algebraic, and in this cases varia-
tional and optimal control problems can be attacked [23] using algorithms
based in the so-called Lasserre hierarchy of sums of square polynomials.
This, however, requires a relaxation of the problem to allow for an occu-
pation measure-valued solution. In our work [38] with Milan Korda, we
analyse the possible gap between the classical solutions and those in the
(larger) space of occupation measures.

The long-sought solution of the problem depends on the dimensions of
the problem: under very lax assumptions, the most important of which
being that the integrand be convex in the velocities, there is no gap in the
dimension 1 and in the codimension 1 cases, and that there may be a positive
gap in all other cases. To prove the no-gap result, we show that every
occupation measure in codimension one can be decomposed as a convex
superposition of Lipschitz functions. The positive gap result is shown by

R. Ŕıos-Zertuche — 2



means of a counterexample in dimension 4, that looks a lot like the Riemann
surface of the square-root, and the proof leverages the Poincaré–Wirtinger
inequality in a clever way.

2 Calculus of variations done with closed measures

The theory of calculus of variations can be developed in many different
contexts, each with its advantages and disadvantages. Following the line of
research of Mather [29,40], Fathi–Siconolfi [17,18], Mañé [10,28], and others,
I have focused on the so-called closed measures. These carry more informa-
tion than currents and varifolds, the objects that the school of De Giorgi
has focused on [19], as they encode “parameterization speeds,” and hence
constitute the natural home to a rich theory that includes all of classical
mechanics.

Closed measures µ are the weak* closure of occupation measures of the
space of measures on the tangent bundle TM induced by the jets (γ, γ′) of
closed curves γ, γ(0) = γ(T ), and the problem of minimizing an integral of
the form

1

T

∫ T

0
L(γ(t), γ′(t))dt

can be replaced by the minimization of an integral of the form∫
TM

Ldµ,

with many advantages, including compactness properties.

By definition, a Radon probability measure µ on the tangent bundle TM
is closed if

∫
TM df dµ = 0 for all f ∈ C∞(M).

In this context, we have strived to understand what the minimizable
functionals look like (Section 2.1), what the variations of closed measures
look like and the properties of critical closed measures and extremals (Sec-
tion 2.2), what the link is to the so-called weak kam theory and how it
can be generalized to higher-dimensional contexts (Section 2.3). Leveraging
the understanding of critical points derived in those works, we have also
endeavoured to bridge the theory with quantum mechanics using Feynman
path integrals.

2.1 Minimizable Lagrangian densities

In the case of a Tonelli Lagrangian L, the study of measures minimizing the
action functional µ 7→

∫
TM Ldµ has produced substantial fruits, such as an

equivalence with the dynamics of twist maps [20], the existence of minimizers
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[12], a very developed theory of the Hamilton-Jacobi equation through weak
kam theory [17] and viscosity solutions [11], interesting geometric properties
related to the Lyapunov exponents [2], and the Mather–Aubry theory [29,
40], to name a few.

Characterization. We depart from the strictly-Tonelli context, and we find
in [36] that the (not necessarily convex) Lagrangian densities L such that
the integral

∫
TM Ldµ reaches its minimum in the space of closed measures,

can be written as
L(x, v) = c + dfx(v) + g(x, v),

for a real number c, an exact form df , and a nonnegative function g that
vanishes along the support of the minimizer. In the hardest part of the
proof, we also prove that df is Lipschitz on the support of the minimizer.
Here, f can be understood as a subsolution of the Hamilton-Jacobi equation
and −c is Mañé’s critical value − infγ

1
T

∫ T
0 L(γ(t), γ′(t))dt.

This unifies and generalizes John Mather’s Lipschitz lamination result
[29,40], the regularity theory of critical subsolutions of the Hamilton-Jacobi
equation [5], and the weak kam theory [17]. The result is sharp in several
ways.

This characterization thus gives light to the ubiquitous occurence of the
Hamilton-Jacobi equation, while also highlighting the less fundamental na-
ture of the Euler-Lagrange equation and of the Hamiltonian flow, which
many minimizers do not follow and which are sometimes not even possible
to define. The impossibility arises from the level of generality in which we
work — we consider Lagrangian densities that do not, in general, satisfy
the hypotheses that are generally used in existence theorems, such as being
Tonelli, convex, superlinear, coercive, etc.

Optimal control. A similar characterization [36] for the case of certain opti-
mal control problems also unifies the above with the Pontryagin Maximum
Principle and the Hamilton-Jacobi-Bellman equation.

For the Pontryagin Maximum Principle [30], we have a new, concise
proof using dual convex cones and, with appropriate conditions, we are able
to use the Lipschitz continuity regularity result for df to show that this
principle holds for all times t rather than (as is proved almost everywhere
else, it seems) for almost all times t.

For the Hamilton-Jacobi-Bellman equation, we deduce that the exact
form from the decomposition of L corresponds to a function that is a critical
subsolution to this equation, and we prove a C1,1 regularity result for the
solutions in certain regions.
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Finsler metrics. Additionally, we were able to derive some results about the
regularity of the distance function associated to a non-strictly-convex Finsler
metric. We were able to prove that the distance to a closed set is C1,1 away
from its obvious singularities, a result that also turned out to be true in the
context of non-strictly convex, not necessarily positive, C2 1-homogeneous
functions on TM , as long as they are bounded from below by an exact form.
This generalizes results of [26,27].

2.2 Variations of closed measures

Main result. Given a closed measure µ, which may encode for example
a curve, we characterize [31] all the possible families (µt)t⩾0 of weakly-
differentiable deformations of µ = µ0. To do this, we determine the dis-
tributions that arise as weak derivatives dµt/dt|t=0 of these families, and we
use an abstract convex-geometrical result [32] to prove the converse existence
statement.

This allows us to identify directions such that when the action is critical
as we deform in those directions, that is, if

d

dt

∫
TM

Ldµt

∣∣∣∣
t=0

= 0, (1)

this implies, separately:

1. energy conservation,

2. the momentum being given by an exact form,

3. the Lipschitz continuity of the momenta (as in Mather’s result [29]),
and

4. the Euler-Lagrange equations are satisfied weakly.

In other words, we find subspaces of the tangent bundle to the space of closed
measures such that, if (1) holds for all deformations (µt)t⩾0 with derivative
in that subspace, then the measure must have the corresponding property
1–4. To the best of our knowledge, all preceding texts used a very coarse
definition of criticality that implied all of these properties simultaneously;
we find that directionally restrictive definitions of criticality may give rise
to very specific sets of properties. These are prone to appear, for example,
in optimisation with problems with constraints.

We are also able to study in detail the cases in which the Euler-Lagrange
equation is applicable, including an almost-variational characterization of
measures invariant under the flow it induces on TM . It turns out that there
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are examples of extremals that do not follow the Euler-Lagrange equation,
so a purely-variational characterization is impossible. However, with a nat-
ural regularity requirement, we find a relatively small family of directions
such that when the action is critical as we deform in those directions, the
measure needs to be invariant under the flow induced by the Euler-Lagrange
equations on the tangent bundle.

This allows us to recover and generalize the result of R. Mañé that
minimizing closed measures are invariant under the Euler-Lagrange flow
[10, 28]. Since our cleaner, shorter proof is completely non-dynamical, we
are able to extend this result to much more general contexts (we only need
the fiberwise Hessian of the Lagrangian to be locally invertible).

Mass transport. In [32] we study the continuity equation in mass transport.
The paper characterizes the distributions (in the sense of Schwartz) that are
derivatives of weakly-differentiable deformations of probability measures.

While in the case of families absolutely-continuous with respect to the
Wasserstein metric the answer is that probabilities can only be flowed along
vector fields, slightly less regular families display much richer behavior: they
can give rise to distributions of arbitrary degree as their derivative. We thus
find that the tangent bundle to the space of probabilities is much larger
than the one proposed by Ambrosio–Gigli–Savaré [1] if we allow weakly
differentiable curves, rather than only Wasserstein absolutely continuous
curves.

Using Colombeau algebras, we also develop a way to understand those
distributions as giving a “direction of the movement” in the way a vector
field V describes the direction in which the family of densities ρt flows when
following the continuity equation

dρt
dt

+ divρtVt = 0.

2.3 Higher-dimensional weak KAM theory

For 1-dimensional objects, the Fathi-Siconolfi weak kam theory [17] non-
perturbatively relates the viscosity solutions of the Hamilton-Jacobi equa-
tion, the quasiperiodic properties of minimizers in different homology classes,
and the dynamics of orbits close to those minimizers.

We found [33] a generalization of weak kam to the case of higher-
dimensional minimizers. Inspired from the discovery that the criticality
with respect to certain variations implied that the momenta were given by
an exact form, we tried to look for a general theory that looked more like
the one that had been developed for the one-dimensional case. Minimizing
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candidates of dimension n are encoded as closed measures on the sum

TnM = TM ⊕ TM ⊕ · · · ⊕ TM︸ ︷︷ ︸
n

.

The functional they minimize is of the form µ 7→
∫
TnM Ldµ for a Lagrangian

density L : TnM → R such as the n-dimensional volume.

The theory we found entails a suitable definition of “slices of cobor-
disms,” and it produces a fixed point weak kam solution of the action of
the Lax-Oleinik semigroup defined there, and it shows that in many circum-
stances that solution descends to a calibrating differential form of order n
on the manifold M , thereby completing the analogy with the 1-dimensional
case.

3 Representation theory: quadratic differentials

For my thesis [34], I worked on the problem of the computation of the
volumes of the moduli space of quadratic differentials on a Riemann surface.
This was a path already well-trodden [15,16,22] since the problem was first
motivated [21] as a way to obtain information about the Lyapunov exponents
of the SL2(R) action on Teichmüller space.

The main result of the thesis is a structural formula for the volumes
of the strata of the moduli space of quadratic differentials on a Riemann
surface, relating them to expectations of a certain point process, and several
related results.

Another contribution is a combinatorial formula for the characters of
near-involutions in the symetric group that allows for the study of those
point processes, as well as their asymptotic computation for large degrees.

A later spawn was an expository article [35] that gives a thorough in-
troduction to a 0-dimensional quantum field theory that encodes important
information about the representations of symmetric groups of asymptotically
infinite order.

References

[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows
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